Abstract

This study addresses the challenge of accurately identifying filamentous fungi in medical laboratories using transfer learning with convolutional neural networks (CNNs). The study uses microscopic images from touch-tape slides with lactophenol cotton blue staining, the most common method in clinical settings, to classify fungal genera and identify Aspergillus species. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. As a result, the study achieved an overall classification accuracy of 94.9% for four frequently encountered genera and 84.5% for Aspergillus species. One of the distinct features is the involvement of medical technologists in developing a model that seamlessly integrates into routine workflows. In addition, the study highlights the potential of merging advanced technology with medical laboratory practices to diagnose filamentous fungi accurately and efficiently. IMPORTANCE This study utilizes transfer learning with CNNs to classify fungal genera and identify Aspergillus species using microscopic images from touch-tape preparation and lactophenol cotton blue staining. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. As a result, the study achieved an overall classification accuracy of 94.9% for four frequently encountered genera and 84.5% for Aspergillus species. One of the distinct features is the involvement of medical technologists in developing a model that seamlessly integrates into routine workflows. In addition, the study highlights the potential of merging advanced technology with medical laboratory practices to diagnose filamentous fungi accurately and efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.