Abstract
As road traffic sign recognition is a crucial component for automatic driver assistance systems, it is a key problem in computer vision as well. Therefore, in this paper, we study on the problem of road traffic sign recognition utilising the computer vision technology. The main innovation of this paper is to propose an improved convolutional neural network, and then use it to tackle the road traffic sign recognition problem. Convolutional neural network can learn features from training data set, and a convolutional network contains alternating layers of convolution and pooling. Particularly, RGB traffic images are transformed to grey scale images, and then grey scale images are input to the improved convolutional neural network. Furthermore, the fixed layers are utilised to discover region of interests, and the learnable layers are used to extract features. In general, output information of the proposed two learnable layers are input to the classifier separately, and parameters of learnable layers and the classifier are trained at the same time. Finally, GTSDB data set is chosen to make performance evaluation, among which 600 images and 300 images are regarded as training and testing data set respectively. Experimental results demonstrate that the improved CNN-based traffic sign recognition performs better than the traditional CNN.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Vision and Robotics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.