Abstract

Accurate retinal vessel segmentation from fundus images is essential for eye disease diagnosis. Many deep learning methods have shown great performance in this task but still struggle with limited annotated data. To alleviate this issue, we propose an Attention-Guided Cascaded Network (AGC-Net) that learns more valuable vessel features from a few fundus images. Attention-guided cascaded network consists of two stages: the coarse stage produces a rough vessel prediction map from the fundus image, and the fine stage refines the missing vessel details from this map. In attention-guided cascaded network, we incorporate an inter-stage attention module (ISAM) to cascade the backbone of these two stages, which helps the fine stage focus on vessel regions for better refinement. We also propose Pixel-Importance-Balance Loss (PIB Loss) to train the model, which avoids gradient domination by non-vascular pixels during backpropagation. We evaluate our methods on two mainstream fundus image datasets (i.e., DRIVE and CHASE-DB1) and achieve AUCs of 0.9882 and 0.9914, respectively. Experimental results show that our method outperforms other state-of-the-art methods in performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.