Abstract
In this paper, we present a feature-based approach for monocular scene reconstruction based on Extended Kalman Filters (EKF). Our method processes a sequence of images taken by a single camera mounted frontally on a mobile robot. Using a combination of various techniques, we are able to produce a precise reconstruction that is free from outliers and can therefore be used for reliable obstacle detection and 3D map building. Furthermore, we present an attention-driven method that focuses the feature selection to image areas where the obstacle situation is unclear and where a more detailed scene reconstruction is necessary. In extensive real-world field tests we show that the presented approach is able to detect obstacles that are not seen by other sensors, such as laser range finders. Furthermore, we show that visual obstacle detection combined with a laser range finder can increase the detection rate of obstacles considerably, allowing the autonomous use of mobile robots in complex public and home environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.