Abstract
The best constant in the Sobolev inequality in the whole space is attained by the Aubin–Talenti function; however, this does not happen in bounded domains because of the break down of the dilation invariance. In this paper, we investigate a new scale invariant form of the Sobolev inequality in a ball and show that its best constant is attained by functions of the Aubin–Talenti type. Generalization to the Caffarelli–Kohn–Nirenberg inequality in a ball is also discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have