Abstract

The distributed nature of distributed learning renders the learning process susceptible to model poisoning attacks. Most existing countermeasures are designed based on a presumed attack model, and can only perform under the presumed attack model. However, in reality a distributed learning system typically does not have the luxury of knowing the attack model it is going to be actually facing in its operation when the learning system is deployed, thus constituting a zero-day vulnerability of the system that has been largely overlooked so far. In this paper, we study the attack-model-agnostic defense mechanisms for distributed learning, which are capable of countering a wide-spectrum of model poisoning attacks without relying on assumptions of the specific attack model, and hence alleviating the zero-day vulnerability of the system. Extensive experiments are performed to verify the effectiveness of the proposed defense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call