Abstract

Radio-frequency identification (RFID) technology is the enabler for applications like the future internet of things (IoT), where security plays an important role. When integrating security to RFID tags, not only the cryptographic algorithms need to be secure but also their implementation. In this work we present differential power analysis (DPA) and differential electromagnetic analysis (DEMA) attacks on a security-enabled RFID tag. The attacks are conducted on both an ASIC-chip version and on an FPGA-prototype version of the tag. The design of the ASIC version equals that of commercial RFID tags and has analog and digital part integrated on a single chip. Target of the attacks is an implementation of the Advanced Encryption Standard (AES) with 128-bit key length and DPA countermeasures. The countermeasures are shuffling of operations and insertion of dummy rounds. Our results illustrate that the effort for successfully attacking the ASIC chip in a real-world scenario is only 4.5 times higher than for the FPGA prototype in a laboratory environment. This let us come to the conclusion that the effort for attacking contactless devices like RFID tags is only slightly higher than that for contact-based devices. The results further underline that the design of countermeasures like the insertion of dummy rounds has to be done with great care, since the detection of patterns in power or electromagnetic traces can be used to significantly lower the attacking effort.KeywordsRadio-Frequency Identification (RFID)Advanced Encryption Standard (AES)Side-Channel Analysis (SCA)Differential Power Analysis (DPA)Differential Electromagnetic Analysis (DEMA)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.