Abstract

This work presents algorithms for the planning phase of wavelength division multiplexed (WDM) optical networks considering the impact of physical layer attacks. Since the signals in transparent WDM networks are transmitted all-optically without undergoing any Optical–Electrical–Optical (OEO) conversions, these networks are vulnerable to high-power jamming attacks. Due to crosstalk-induced interactions among different connections, malicious high-power signals can potentially spread widely in the network. To this end, it is necessary to plan an optical network in a way that the spread of an attack is minimized. In this work novel Integer Linear Programming (ILP) formulations are proposed that address the problem of routing and wavelength assignment (RWA) with the objective to minimize the propagation of the introduced high-power malicious signals. The physical layer attack propagation is modeled as interactions among connections through in-band and out-of-band channel crosstalk. In addition, Linear Programming (LP) relaxation techniques and heuristic algorithms are used to handle larger network instances. Performance results indicate that the proposed algorithms perform close to the traditional RWA algorithms in terms of total wavelength utilization of the network, while at the same time providing security against high-power jamming attacks by minimizing the total number of in-band and out-of-band lightpath interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.