Abstract

To study the intranodal origin of the functional properties of the atrioventricular node, progressive changes in nodal cell activation time and cycle length occurring during complete sequences of periodic premature stimulation of the atrium were determined for 419 nodal cells recorded in 11 isolated rabbit heart preparations. The conduction time in proximal nodal cells including the N cells increased only at very short coupling intervals. Conduction time in the distal node (NH and H cells) first increased and then decreased with increasing prematurity. The major fraction of the basic and premature delays developed between N and NH cell activation, a period devoid of upstrokes. The effective and functional refractory periods were related to the minimum intervals between successive upstrokes at the node entrance and outlet, respectively. These results suggest that the cycle-length dependency of nodal conduction is the result of complex changes in propagation time occurring at three levels in the node, whereas the effective and functional refractory periods reflect reactivation limits of cells located at the node entrance and outlet, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.