Abstract

Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.

Highlights

  • Abiotic stress factors such as moisture stress, salinity, extreme temperature and variable light intensity can disturb plant metabolism and growth

  • The plant response includes the induced synthesis of certain enzymes and low molecular weight compounds associated with antioxidant activity, redox regulators, chaperones such as heat shock proteins and late embryogenesis abundant proteins, water and ion transporters, the production of compatible osmolytes to maintain cellular water content and the fine tuning of proteolysis involved in programmed cell death

  • Based on an alignment of related sequences extracted from various species, the family can be subdivided into eight sub-families [23], according to which AtRD22 belongs to the ATRD22-like subgroup, AtUSPL1 to the BNM2-like sub-family, and AtPG1-3 to the PG1b-like subfamily

Read more

Summary

Introduction

Abiotic stress factors such as moisture stress, salinity, extreme temperature and variable light intensity can disturb plant metabolism and growth. It has been estimated that crop yield losses due to such stresses lie in the order of 50% [1], so increasing the resilience of crop plants will be an important contributor to yield stability. Abiotic stress affects both photosynthesis and photorespiration, as well as having an impact on the energy and redox status of the plant cell. The plant response includes the induced synthesis of certain enzymes and low molecular weight compounds associated with antioxidant activity, redox regulators, chaperones such as heat shock proteins and late embryogenesis abundant proteins, water and ion transporters, the production of compatible osmolytes to maintain cellular water content and the fine tuning of proteolysis involved in programmed cell death. With varying levels of success, have been made to genetically engineer the production of some of these components with a view to enhancing abiotic stress tolerance [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.