Abstract

The herbicide atrazine is used extensively throughout the United States, and is a widespread groundwater and surface water contaminant. Biochar has been shown to strongly sorb organic compounds and could be used to reduce atrazine leaching. We used lab and field experiments to determine biochar impacts on atrazine leaching under increasingly heterogeneous soil conditions. Application of pine chip biochar (commercially pyrolyzed between 300 and 550°C) reduced cumulative atrazine leaching by 52% in homogenized (packed) soil columns (p=0.0298). Biochar additions in undisturbed soil columns did not significantly (p>0.05) reduce atrazine leaching. Mean peak groundwater atrazine concentrations were 53% lower in a field experiment after additions of 10tha−1 acidified biochar (p=0.0056) relative to no biochar additions. Equivalent peat applications by dry mass had no effect on atrazine leaching. Plots receiving a peat-biochar mixture showed no reduction, suggesting that the peat organic matter may compete with atrazine for biochar sorption sites. Several individual measurement values outside the 99% confidence interval in perched groundwater concentrations indicate that macropore structure could contribute to rare, large leaching events that are not effectively reduced by biochar. We conclude that biochar application has the potential to decrease peak atrazine leaching, but heterogeneous soil conditions, especially preferential flow paths, may reduce this impact. Long-term atrazine leaching reductions are also uncertain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call