Abstract
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging is a method for spatially resolved analysis of materials that combines the capabilities of ATR-FTIR spectroscopy with the use of a focal plane array detector. This paper presents the methodological aspects of adapting the ATR accessory with variable single reflection angle to the FTIR spectroscopic imaging method. The use of a variable reflection angle allows the image to be studied at different sample depths. Using examples of BMIMPF6 ionic liquid and crude oil droplets placed on the working surface of an internal reflection element, the characteristics of image acquisition as the angle of reflection is varied are discussed. The possibility of obtaining crude oil deposits directly on the working surface of the internal reflection element under the influence of a flocculant flow (n-heptane, acetone) and their study by ATR-FTIR spectroscopic image was demonstrated. Crude oil deposits were obtained under different formation conditions (flow rates of flocculant) and their spectroscopic images were also obtained at different single reflection angles. This information gives an indication of the composition of the deposit’s functional groups not only at spatial resolution but also at depth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have