Abstract

The dependency of dopant-distributions on channel diameters in realistically sized, highly phosphorus-doped silicon nanowires is investigated with an atomistic tight-binding approach coupled to self-consistent Schrödinger-Poisson simulations. By overcoming the limit in channel sizes and doping densities of previous studies, this work examines electronic structures and electrostatics of free-standing circular silicon nanowires that are phosphorus-doped with a high density of ∼ 2 × 10(19) cm(-3) and have 12 nm-28 nm cross-sections. Results of analysis on the channel energy indicate that the uniformly distributed dopant profile would be hardly obtained when the nanowire cross-section is smaller than 20 nm. Insufficient room to screen donor ions and shallower impurity bands are the primary reasons of the nonuniform dopant-distributions in smaller nanowires. Being firmly connected to the recent experimental study (Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15254-15258), this work establishes the first theoretical framework for understanding dopant-distributions in over-10 nm highly doped silicon nanowires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.