Abstract

Molecular electronics is one of the promising technologies for future electronic applications that is currently gaining a lot of interest. This is because if single molecule could be used as active electronic components this would provide an ultimate device miniaturization. Previously studied molecules provide almost exclusively two terminal devices. In this paper, three-leg molecular devices are examined employing a first-principles study based on density functional theory coupled to the non-equilibrium Green’s function formalism. We illustrate the feasibility of building a prototype molecular transistor using three-leg molecules directly contacted to gold electrodes. We discuss the different factors that control the transport through this molecular transistor. Moreover, we show that a functional standalone NAND logic gate can be implemented using a single three-leg molecular device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.