Abstract

Density-functional theory calculations of the xenon incorporation energies in point defects in urania have been done in order to fit empirical potentials. With this set of parameters, we have considered the incorporation of xenon in small and extended defects such as planar interstitials, grain boundaries, faceted, and spherical voids. The results show that xenon atoms are more likely to aggregate than to be homogeneously distributed in the urania grains. $\ensuremath{\sum}5$ grain boundary and spherical shape voids are the most favorable defects of xenon atom incorporation. The presence of xenon atoms in nanovoids affects their shape. The energy gain to aggregate xenon atoms into clusters saturates for cluster sizes of about 15--20 Schottky defects. This demonstrates that medium size defects are just as favorable as big size defects for xenon incorporation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.