Abstract
As the active dimensions of metal-oxide field-effect transistors are approaching the atomic scale, the electronic properties of these ``nanowire'' devices must be treated on a quantum mechanical level. In this paper, the transmission coefficients and the density of states of biased and unbiased Si and GaAs nanowires are simulated using the $s{p}^{3}{d}^{5}{s}^{*}$ empirical tight-binding method. Each atom, as well as the connections to its nearest neighbors, is represented explicitly. The material parameters are optimized to reproduce bulk band-structure characteristics in various crystal directions and various strain conditions. A scattering boundary method to calculate the open boundary conditions in nanowire transistors is developed to reduce the computational burden. Existing methods such as iterative or generalized eigenvalue problem approaches are significantly more expensive than the transport simulation through the device. The algorithm can be coupled to nonequilibrium Green's function and wave function transport calculations. The speed improvement is even larger if the wire transport direction is different from [100]. Finally, it is demonstrated that strain effects can be easily included in the present nanowire simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.