Abstract

The mechanisms of deformation at the crack tip in L12 Ni3Al have been studied by molecular dynamics simulations. The stress-induced microtwinning is found to occur at the crack tip when a sufficiently high stress concentration exists. The formation mechanism of the microtwinning is discussed. It is found to be achieved by the emission of Shockley partial dislocations from the crack tip and then slip of the Shockley partial dislocations on adjacent {111} planes. Furthermore, the mechanism of the microtwinning is also discussed from the standpoint of stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.