Abstract
We studied the migration behavior of mixed tilt and twist grain boundaries in the vicinity of a symmetric tilt $\ensuremath{\langle}111\ensuremath{\rangle} \mathrm{\ensuremath{\Sigma}}7$ grain boundary in aluminum. We show that these grain boundaries fall into two main categories of stepped and kinked grain boundaries around the atomically flat symmetric tilt boundary. Using these structures together with size converged molecular dynamics simulations and investigating snapshots of the boundaries during migration, we obtain an intuitive and quantitative description of the kinetic and atomistic mechanisms of the migration of general mixed grain boundaries. This description is closely related to well-known concepts in surface growth such as step and kink-flow mechanisms and allows us to derive analytical kinetic models that explain the dependence of the migration barrier on the driving force. Using this insight we are able to extract energy barrier data for the experimentally relevant case of vanishing driving forces that are not accessible from direct molecular dynamics simulations and to classify arbitrary boundaries based on their mesoscopic structures.
Highlights
Using these structures together with size converged molecular dynamics simulations and investigating snapshots of the boundaries during migration, we obtain an intuitive and quantitative description of the kinetic and atomistic mechanisms of the migration of general mixed grain boundaries. This description is closely related to well-known concepts in surface growth such as step and kink-flow mechanisms and allows us to derive analytical kinetic models that explain the dependence of the migration barrier on the driving force
We have investigated the migration kinetics of mixed tilt and twist grain boundaries in the vicinity of a symmetric 7 tilt orientation
We studied the migration behavior of these three boundary types—atomically flat, stepped, and kinked—using sizeconverged molecular dynamics simulations
Summary
The aim of the present study is to employ MD simulations to study the atomistic mechanisms involved in the migration of grain boundaries with nonsymmetric plane orientations in the vicinity of a symmetric tilt one
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.