Abstract

Abstract The oxidation corrosion is a crucial challenge for zirconium (Zr) alloys as cladding materials in fission power reactors. In the present study, a first-principles approach is employed for understanding behaviors of oxygen adsorbed on the Zr ( 10 1 - 1 ) surface. It is found that the Zr substrate is reactive to O species. Electrons in the 4d band of the metallic substrate tend to migrate to antibonding orbitals of the adsorbed O2 molecule, leading to breaking the O-O bond and releasing energy. Several diffusion paths for an adsorbed O atom migrating to the subsurface interstitial site are proposed. It is found that the lowest diffusion barrier is only 0.08 eV. Therefore, it can be inferred that the Zr ( 10 1 - 1 ) surface suffers fast oxidation kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.