Abstract
Zirconium alloys, which are widely used as cladding materials in nuclear reactors, are prone to react with oxygen (O). Furthermore, the ω-Zr in zirconium alloys can significantly increase the strength and hardness of these alloys, but there is a lack of reports on the behavior of oxygen in ω-Zr in the current literature. To investigate their interactions, we have studied the behavior of O in ω-Zr using the first-principles approach. In this work, we examined the effects of vacancy and alloying elements (Nb, Sn) on the behavior of O in ω-Zr. The results show that O with a formation energy of −5.96 eV preferentially occupies an octahedral interstitial position in ω-Zr. A vacancy reduces the formation energy of O in a tetrahedral interstitial position in ω-Zr. Nb and Sn decrease the formation energy of O in the octahedral interstitial position by 6.16 eV and 5.08 eV. Vacancy effectively reduces the diffusion barrier of O around it, which facilitates the diffusion of O in ω-Zr. Nb and Sn preferentially occupy the 1b and 2d substitution sites in ω-Zr, respectively. Nb makes the diffusion barrier of O in ω-Zr lower and promotes the diffusion of O in ω-Zr. Moreover, Sn makes the diffusion of O around Sn difficult. It was further found that O is less prone to form clusters in ω-Zr and tends to independently occupy interstitial positions in ω-Zr. In particular, a single vacancy would make the binding energy between O atoms to be further reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.