Abstract

The role of amine groups in the phase separation of thermoresponsive poly(2-dialkylaminoethyl methacrylate)s with dimethyl-, diethyl-, and diisopropylaminoethyl substituents has been studied by atomistic molecular dynamics simulations. The polymer chains present a more compact conformation at higher temperatures, losing contact with the water molecules. In the vicinity of the amine groups, the exclusion of water molecules increases with the increasing hydrophobicity of the amine moieties above the lower critical solution temperature. In particular, the potential of mean force results suggest that the formation of hydrogen bonding between the amine groups and water molecules involves more entropic contributions at higher temperatures in the cases of the diethylaminoethyl and diisopropylaminoethyl groups. These results provide insight for the rational design of side chains of thermoresponsive polymers for smart materials and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.