Abstract

Determining the atomic structure of internal interfaces in materials and devices is critical to understanding their functional properties. Interfacial doping is one promising technique for controlling interfacial properties at the atomic scale, but it is still a major challenge to directly characterize individual dopant atoms within buried crystalline interfaces. Here, we demonstrate atomic-scale plan-view observation of a buried crystalline interface (an yttrium-doped alumina high-angle grain boundary) using aberration-corrected Z-contrast scanning transmission electron microscopy. The focused electron beam transmitted through the off-axis crystals clearly highlights the individual yttrium atoms located on the monoatomic layer interface plane. Not only is their unique two-dimensional ordered positioning directly revealed with atomic precision, but local disordering at the single-atom level, which has never been detected by the conventional approaches, is also uncovered. The ability to directly probe individual atoms within buried interface structures adds new dimensions to the atomic-scale characterization of internal interfaces and other defect structures in many advanced materials and devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.