Abstract
The effects of doping conventional UO2 fuel with chromium are studied through atomistic simulations using empirical force field methods. We first analyse the stable structures of unirradiated doped fuel by determining the preferred lattice configuration of chromium ions and oxygen vacancies within the matrix. In order to understand the physical effects of the dopants, we investigate the energy change upon inserting isolated defects and Frenkel pairs in the vicinity of chromium. The behaviour of point defects is then studied with collision cascade simulations and relaxation of doped simulation cells containing Frenkel pairs. The defective structures are analysed using an in-house tool named ASTRAM. Results indicate definite effects of chromium-doping on the ease with which defects are formed. Moreover, the extent of Cr effects on the residual damage following a displacement cascade is dependent on the dopant distribution and concentration in the fuel matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.