Abstract

Single atom catalysts (SACs) are atomic-level-engineered materials with high intrinsic activity. Catalytic centers of SACs are typically the transition metal (TM)-nonmetal coordination sites, while the functions of coexisting non-TM-bonded functionalities are usually overlooked in catalysis. Herein, the scalable preparation of carbon-supported cobalt-anchored SACs (CoCN) with controlled Co─N sites and free functional N species is reported. The role of metal- and nonmetal-bonded functionalities in the SACs for peroxymonosulfate (PMS)-driven Fenton-like reactions is first systematically studied, revealing their contribution to performance improvement and pathway steering. Experiments and computations demonstrate that the Co─N3C coordination plays a vital role in the formation of a surface-confined PMS* complex to trigger the electron transfer pathway and promote kinetics because of the optimized electronic state of Co centers, while the nonmetal-coordinated graphitic N sites act as preferable pollutant adsorption sites and additional PMS activation sites to accelerate electron transfer. Synergistically, CoCN exhibits ultrahigh activity in PMS activation for p-hydroxybenzoic acid oxidation, achieving complete degradation within 10min with an ultrahigh turnover frequency of 0.38min-1, surpassing most reported materials. These findings offer new insights into the versatile functions of N species in SACs and inspire rational design of high-performance catalysts in complicated heterogeneous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.