Abstract

Up until now there has been no direct method for detecting the electronic and magnetic structure of each atomic layer at the surface, which is an essential analysis technique for nanotechnology. For this purpose, we have developed a new method, diffraction spectroscopy, based on the photon energy dependence of the angular distribution of Auger electron emission. We have applied this method to analyze the magnetic structure of a Ni ultrathin film on a Cu(001) surface around the spin reorientation transition. Atomic-layer resolved x-ray absorption and magnetic circular dichroism spectra were obtained. Surface and interior core-level shifts and magnetic moments are determined for each atomic layer individually.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.