Abstract

Atomically thin oxide semiconductors are significantly expected for next-generation cost-effective, energy-efficient electronics. A high-performance p-channel oxide thin-film transistor (TFT) was developed using an atomically thin p-type tin monoxide, SnO channel with a thickness of ∼1 nm, which was grown by a vacuum-free, solvent-free, metal-liquid printing process at low temperatures, as low as 250 °C in an ambient atmosphere. By performing oxygen-vacancy defect termination for the bulk-channel and back-channel surface of the ultrathin SnO channel, the presented p-channel SnO TFT exhibited good device performances with a reasonable TFT mobility of ∼0.47 cm2 V-1 s-1, a high on/off current ratio of ∼106, low off current of <10-12 A, and a subthreshold swing of ∼2.5 V decade-1, which was improved compared with the conventional p-channel SnO TFTs. We also fabricated metal-liquid printing-based n-channel oxide TFTs such as n-channel SnO2 and In2O3-TFTs and developed ultrathin-channel oxide-TFT-based low-power complementary inverter circuits with the developed p-channel SnO TFTs. The full swing of voltage-transfer characteristics with a voltage gain of ∼10 and a power dissipation of <4 nW for p-SnO/n-SnO2 and ∼120 and <2 nW for p-SnO/n-In2O3-CMOS inverters were successfully demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.