Abstract

Silicon carbide alloys are widely used in high-tech applications due to their interesting combination of chemical, mechanical and electronic properties. Growing thin films of this material in a simple and controlled way is a hot topic in modern material's science. In particular, the possibility to tailor the film properties just by tuning the deposition temperature would be an important progress. In the present work amorphous silicon–carbon alloys thin films have been deposited by electron beam sublimation of a poly-crystalline silicon carbide target in vacuum environment. The deposition temperature was varied from Room Temperature to about 1300 K. The resulting films were analyzed by means of Ultra High Vacuum–Atomic Force Microscopy (UHV–AFM) down to even atomic resolution. The observed features agree with literature data, e.g. interatomic bond lengths, as achieved by others methods, and the structural arrangements of silicon and carbon atoms as concluded from IR and Raman spectroscopy measurements carried out on the same samples. The results not only allow a correlation between film properties and deposition temperature but also support the notion of the UHV –AFM images of the amorphous surfaces being atomically resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call