Abstract

The electronic states of silicon donors in a wide gap semiconductor, β-Ga2O3(100), have been studied using low-temperature scanning tunneling microscopy. We observe one-dimensional rows along [010], as expected from the crystal structure. In addition, substitutional Si donors are identified up to the fourth subsurface layer with clear spectroscopic features at the bottom of the conduction band. The decay length of each subsurface Si donor is systematically measured, and reasonably agrees with a picture of the Si donor in bulk β-Ga2O3. These results strongly suggest that Si impurities are shallow donors and responsible for the high electrical conductivity of β-Ga2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.