Abstract
Photonic nanomaterials play a crucial role in facilitating the necessary signal for optical brain imaging, presenting a promising avenue for early diagnosis of brain-related disorders. However, the blood-brain barrier (BBB) presents a significant challenge, blocking the entry of most molecules or materials from the bloodstream into the brain. To overcome this, photonic nanocrystals in the form of gold clusters (LAuC) with size less than 3 nm, have been developed, with Levodopa conjugated to LAuC (Dop@LAuC) for targeted brain imaging. Dop@LAuC crosses the BBB and emits in the near-infrared (NIR) wavelength, enabling real-time optical brain imaging. An in vitro BBB model using brain endothelial cells showed that 50 % of Dop@LAuC crossed the barrier within 3 hours, compared to only 10 % of LAuC, highlighting the enhanced ability of L-dopa-conjugated gold clusters to penetrate the BBB. In vivo optical imaging in healthy mice further confirmed the material's efficacy to cross BBB without compromising the barrier integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.