Abstract

AbstractFabrication of advanced electrocatalysts acting as an electrode for simultaneous hydrogen and oxygen evolution reactions (i.e., HER and OER) in an overall cell has attracted massive attention but still faces enormous challenges. This study reports a significant strategy for the rapid synthesis of high‐entropy alloys (HEAs) by pulsed laser irradiation. Two types of intrinsic atomic hollow sites over the surface of HEAs are revealed that enable engaging bifunctional activities for water splitting. In this work, a novel senary HEA electrocatalyst made of FeCoNiCuPtIr facilitates the redox of water at only 1.51 V to achieve 10 mA cm−2 and still remains steadily catalytic and durable after being subjected to a 1m KOH solution for more than 20 h. First‐principles calculations reveal that the incorporation of Ir and Pt atoms with neighboring elements donate valence electrons to hollow sites weakening the coupling strength between adsorbate and alloy surface and, consequently accelerating both HER and OER. This work delivers a powerful technique to synthesize highly efficient HEA catalysts and unravels the formation mechanism of active sites across the surface of HEA catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.