Abstract

Photoelectrochemical (PEC) cells are attractive for storing solar energy in chemical bonds through cleaving of water into oxygen and hydrogen. Although hematite (α-Fe2 O3 ) is a promising photoanode material owing to its chemical stability, suitable band gap, low cost, and environmental friendliness, its performance is limited by short carrier lifetimes, poor conductivity, and sluggish kinetics leading to low (solar-to-hydrogen) STH efficiency. Herein, we combine solution-based hydrothermal growth and a post-growth surface exposure through atomic layer deposition (ALD) to show a dramatic enhancement of the efficiency for water photolysis. These modified photoanodes show a high photocurrent of 3.12 mA cm-2 at 1.23 V versus RHE, (>5 times higher than Fe2 O3 ) and a plateau photocurrent of 4.5 mA cm-2 at 1.5 V versus RHE. We demonstrate that these photoanodes in tandem with a CH3 NH3 PbI3 perovskite solar cell achieves overall unassisted water splitting with an STH conversion efficiency of 3.4 %, constituting a new benchmark for hematite-based tandem systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.