Abstract
Atomic structures in a Σ = 9{2 2 1} tilt grain boundary (GB) grown by Bridgman solidification of a tricrystal are determined through high-resolution transmission electron microscopy and numerical simulation. Atomic models are simulated via molecular dynamics annealing using an n-body potential fitted on copper properties including its stacking fault energy. Symmetrical and asymmetrical facets are thus identified. Mainly asymmetrical facets are observed, namely Σ = 9{11, 11, 1}||{1 1 1} and also small parts of incommensurate {1 1 0}||{1 1 1}. The symmetrical facets are described by a quasi-mirror plane atomic structure. A specific GB structural unit is recognized as a Lomer unit. Its GB Burgers vector depends on the GB structure itself. Further analyses of these models and of accommodating dislocations are successfully carried out at the atomic level within the framework of the continuous structural unit approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.