Abstract
Grain boundaries (GBs) accommodate the misorientation between adjacent grains in a polycrystalline material. GBs are geometrically described by the macroscopic and microscopic degrees of freedom. Besides, at the atomistic level, GBs exhibit complicated behaviors under varying thermodynamic conditions. The complexity of atomistic GB structures demands stochastic searching for possible states. The effectiveness of stochastic search methods relies on techniques to recreate and select atomistic structures. In this work, we developed a new mutation operator that can induce direct and collective atomistic structure changes to boost the search efficiency of exploring GB structures with evolutionary algorithms (EA). We implemented the mutation methods along with innovative selection, crossover, boundary condition preprocessing methods to form an EA-based package to explore GB structures in grand canonical ensembles with atomistic simulations. We used this package to study the [001] symmetric tilt grain boundaries (STGBs) in FCC copper (Cu), the [110] STGBs in BCC tungsten (W), and the [12‾10] STGBs in HCP magnesium (Mg). The results show that our design and implementation based on new mutation procedures, selection, and boundary conditions provide a high-quality search of atomistic GB structures in the grand canonical ensemble for different crystal lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.