Abstract

There has been intense interest in preparing single crystalline yttrium oxide (Y2O3) thin films for applications in ultra-large scale integration (ULSI) gate insulators, ULSI capacitors, and, by addition of suitable dopant species, for electroluminescent devices. Y2O3 has a C-type rare-earth sesquioxide structure, closely related to the fluorite structure with a cell parameter a= 1.060 nm and space group Th (Ia3). LaAIO3 (LAO) is a rhombohedral structure with lattice parameters a = 0.378 nm, θ ≤ 90.5°. The lattice mismatch with the <110> direction of the YO is therefore less than 0.8%, and so we would anticipate epitaxial growth of single crystalline YO thin films on the LAO (001) substrate to be feasible. Eu activated YO thin films were deposited by laser ablation on (001) LAO substrates. TEM bright field images and electron diffraction patterns were recorded in a Philips EM-400 electron microscope operated at lOOkV. Z-contrast imaging was conducted in a VG HB603 STEM at 300kV. In this presentation, we will report the epitaxial growth of YO thin films doped with ∼ wt 4% Eu on a LaAlO3 substrate, and the atomic structure of the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call