Abstract

Tumor histomorphology is crucial for the prognostication of breast cancer outcomes because it contains histological, cellular, and molecular tumor heterogeneity related to metastatic potential. To enhance breast cancer prognosis, we aimed to apply radiomics analysis-traditionally used in 3D scans-to 2D histopathology slides. This study tested radiomics analysis in a cohort of 92 breast tumor specimens for outcome prognosis, addressing -omics dimensionality by comparing models with moderate and high feature counts, using least absolute shrinkage and selection operator for feature selection and machine learning for prognostic modeling. In the test folds, models with radiomics features [area under the curves (AUCs) range 0.799-0.823] significantly outperformed the benchmark model, which only included clinicopathological (CP) parameters (AUC = 0.584). The moderate-dimensionality model with 11 CP + 93 radiomics features matched the performance of the highly dimensional models with 1,208 radiomics or 11 CP + 1,208 radiomics features, showing average AUCs of 0.823, 0.799, and 0.807 and accuracies of 79.8, 79.3, and 76.6%, respectively. In conclusion, our application of deep texture radiomics analysis to 2D histopathology showed strong prognostic performance with a moderate-dimensionality model, surpassing a benchmark based on standard CP parameters, indicating that this deep texture histomics approach could potentially become a valuable prognostic tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.