Abstract

The atomic structure of a pristine Σ = 5 grain boundary in SrTiO 3 has been investigated using a variety of transmission electron microscopy (TEM) techniques. No cation non-stoichiometry or impurity segregants could be detected at the boundary within the limits of the energy dispersive X-ray microanalysis technique used, while preliminary electron energy loss spectroscopy analysis reflects that changes in the optical/dielectric function or the valence of the cations at the interface are too subtle to be detected with our coarse scale measurements. High-resolution transmission electron microscopy indicates a symmetrical tilt grain boundary with a (130)-type grain boundary plane. The grain boundary has a compact core, with negligible plane-normal rigid body translation (RBT). An in-plane RBT of 1 2 d 130 (≈0.62 Å) is identified from the high-resolution electron micrographs. A semi-empirical model of the relaxed atomic structure of the grain boundary based on crystal chemistry principles is proposed, which includes the observed RBT and individual atomic relaxations at the boundary core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.