Abstract

Phase transition between iron oxides practically defines their functionalities in both physical and chemical applications. Direct observation of the atomic rearrangement and a quantitative description of the dynamic behavior of the phase transition, however, are rare. Here, we monitored the structure evolution from a rod-shaped hematite nanoparticle to magnetite during H2 reduction at elevated temperatures. Environmental transmission electron microscopy observations, along with selected area electron diffraction experiments, identified that the reduction preferentially commenced with Fe3O4 nucleation on the surface defective sites, followed by laterally growing into a Fe3O4 film until fully covering the particle surface. The Fe3O4 phase then propagated toward the bulk particle via a Fe3O4/α-Fe2O3 interface with the relationship α-Fe2O3(0001)//Fe3O4(111) in an aligned orientation of [112]Fe3O4||[112̅0]α-Fe2O3. Upon this Fe3O4/α-Fe2O3 interface, the Fe-O octahedra in Fe3O4(111) (as layer A) matches that of α-Fe2O3(0001) at a rotation angle of 30°, and the reduction proceeds in such a pattern that two-thirds of the FeOh in the adjacent layer (layer B) is transformed into FeTe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call