Abstract
The determination of the atomic core of dislocations in semiconductors is a challenging problem for high-resolution electron microscopy(HREM). In previous studies, various defects in elemental semiconductors, III-V and II-VI compound semiconductors have been reported. In particular, the core structure of the 30° partial dislocations in silicon, which are dissociated from a perfect 60° dislocation, have been deduced. present study, various CdTe dislocations have been imaged at 400keV. and their core structures have been analyzed with assistance from multi-slice image simulations. Sections of CdTe single crystal were cut normal to the [110] direction, followed by mechanically polishing to a thickness of ˜ 20 microns and finally argon ion-beam milling to perforation for electron microscopy. The crystals were examined with a JEM-4000EX. having a structure resolution limit of ˜ 1.7Å at 400keV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.