Abstract

Carbon nanotubes1 are predicted to be metallic or semiconducting depending on their diameter and the helicity of the arrangement of graphitic rings in their walls2,3,4,5. Scanning tunnelling microscopy (STM) offers the potential to probe this prediction, as it can resolve simultaneously both atomic structure and the electronic density of states. Previous STM studies of multi-walled nanotubes6,7,8,9 and single-walled nanotubes (SWNTs)10 have provided indications of differing structures and diameter-dependent electronic properties, but have not revealed any explicit relationship between structure and electronic properties. Here we report STM measurements of the atomic structure and electronic properties of SWNTs. We are able to resolve the hexagonal-ring structure of the walls, and show that the electronic properties do indeed depend on diameter and helicity. We find that the SWNT samples exhibit many different structures, with no one species dominating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call