Abstract
A detailed three-dimensional structural analysis of single-walled carbon nanotubes was carried out using a scanning tunneling microscope (STM) operated at room temperature in ambient conditions. On a microscopic scale, the images show tubes condensed in ropes as well as tubes which are separated from each other. For a single-wall nanotube rope, the outer portion is composed of highly oriented nanotubes with nearly uniform diameter and chirality. On separated nanotubes, atomically resolved images show variable chirality ranges between 0°–30°, and variable diameter (1–3 nm), with no one type dominant. From STM and scanning tunneling spectroscopy measurements we confirmed the correlation between chirality and the electronic properties, namely the tuning from metallic to semiconducting. We also observed a rectifying behavior correlated with the chiral angle of 25°, an important observation for nanodevices application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.