Abstract

Excitonic systems, facilitated by optical pumping, electrostatic gating or magnetic field, sustain composite particles with fascinating physics. Although various intriguing excitonic phases have been revealed via global measurements, the atomic-scale accessibility towards excitons has yet to be established. Here, we realize the ground-state interlayer exciton complexes through the intrinsic charge transfer in monolayer YbCl3/graphite heterostructure. Combining scanning tunneling microscope and theoretical calculations, the excitonic in-gap states are directly profiled. The out-of-plane excitonic charge clouds exhibit oscillating Rydberg nodal structure, while their in-plane arrangements are determined by moiré periodicity. Exploiting the tunneling probe to reflect the shape of charge clouds, we reveal the principal quantum number hierarchy of Rydberg series, which points to an excitonic energy-level configuration with unusually large binding energy. Our results demonstrate the feasibility of mapping out the charge clouds of excitons microscopically and pave a brand-new way to directly investigate the nanoscale order of exotic correlated phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.