Abstract
Flexoelectricity is an effective tool in modulating the crystallographic structures and properties of oxides for multifunctional applications. However, engineering the nonuniform strain to obtain tunable flexoelectric behaviors at the atomic scale remains an ongoing challenge in conventional substrate-imposed ferroelectric films. Here, the regulatable flexoelectric behaviors are demonstrated at atomic scale in [110]-oriented BiFeO3 thin films, which are triggered by the strain-field coupling of high-density interfacial dislocations. Using aberration-corrected scanning transmission electron microscopy, the asymmetric polarization rotation around the single dislocation is revealed, which is induced by the gradient strain fields of the single dislocation. These strain fields are highly correlated to generate huge strain gradients between neighboring dislocations, and thereby, serial flexoelectric responses are engineered as a function of dislocation spacings in thicker BiFeO3 films. This work opens a pathway for the modulation of flexoelectric responses in ferroelectrics, which could be extended to other functional materials to create exotic phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.