Abstract

Ceramic/metal (C/M) {222} MgO/Cu (Ag) heterophase interfaces, prepared by internal oxidation, are studied by scanning transmission electron microscopy (STEM). The observed spacing between misfit dislocations (1.45 nm) in a 〈110〉 projection is in agreement with the prediction of Bollmann's geometric O-lattice theory and experimental values in the literature for {222} MgO/Cu interfaces. It is concluded that the {222} MgO/Cu (Ag) interfaces are semicoherent and contain a trigonal network of pure edge misfit dislocations parallel to 〈110〉-type directions, with an ( a/6)〈211〉-type Burgers vector. Misfit dislocations are also found in a standoff position at a distance of a single (111) spacing of the Cu (Ag) matrix. Extra intensity at the interface, in some angular dark-field images indicates silver segregation, in agreement with our atom-probe field-ion microscope results. On the metal side of the interface, extra intensity is observed in five atomic layers, which corresponds to a total silver enrichment of approximately 0.7 effective monolayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.