Abstract

The atomic arrangement and segregation of Pr dopants at a ZnO [0001] $\ensuremath{\Sigma}49$ grain boundary were investigated by $Z$-contrast scanning transmission electron microscopy and first-principles calculations. Scanning transmission electron microscopy revealed that Pr selectively segregated at three kinds of the grain boundary atomic sites. It was found that atomic arrangement of the Pr-doped ZnO [0001] $\ensuremath{\Sigma}49$ grain boundary was similar to that of the undoped GB, and Pr substituted at three kinds of Zn sites at the grain boundary. Comparison of the experimental image with the structure of the undoped grain boundary revealed that the Zn-O interatomic distances are the longest at these Zn sites. There was a tendency for lengths and electronic structures of Pr-O bonds at the Pr-doped ZnO $\ensuremath{\Sigma}49$ grain boundary, when compared with those in the Pr-doped ZnO crystal bulk, to be closer to those in the stable ${\text{Pr}}_{2}{\text{O}}_{3}$ crystal phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.