Abstract

The authors simulate in three dimensions the molecular beam epitaxial growth of InxGa1−xN with classical molecular dynamics. Atomic interactions are simulated with Stillinger–Weber potentials. Both homoepitaxial and heteroepitaxial growths are studied. The effects of substrate temperature and indium concentration on quantum dot morphology, concentration profiles, and the thickness of wetting layers qualitatively agree with experimental findings. The authors’ simulations support earlier suggestions that quantum dot formation in the InGaN/GaN system is governed by a stress-driven phase separation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call