Abstract

We simulate in three dimensions molecular beam epitaxial (MBE) growth of CdTe/ZnTe/Si using classical molecular dynamics. Atomic interactions are simulated with Stillinger–Weber potentials, whose parameters are obtained by fitting to experimental data or density function theory-calculated distortion energies of the component crystals. The effects of substrate temperature and atomic species flux ratios on epilayer morphology are investigated. The agreement between simulations and experiments suggests that this model has reasonable ability to predict the microstructures of CdTe/ZnTe/Si grown by MBE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.