Abstract

We use results from first-principles calculations based on density-functional theory to evaluate the performance of ZrN, HfN, and TiN as diffusion barrier materials. We examine primarily migration of Cu impurities through the bulk or through inter-grain voids of nitride films and we elucidate the conditions that favor moderate diffusion in the former case and very rapid migration in the latter. Migration activation energies for Cu interstitials in the bulk of the materials lie in the range of 0.9–1.4 eV, while the corresponding values for surface diffusion of Cu adatoms vary between 0.1 and 0.55 eV. Based on the agreement between the calculated activation energies and available measured values we resolve previous conflicting suggestions that were used to interpret various experimental data. Overall, our findings highlight the role of native point defects, impurities, and film texture on the performance of nitride diffusion barrier materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.