Abstract
Utilizing synchronous powder feeding laser cladding technology, two high entropy alloy coatings, FeCoCrNiMo and FeCoCrNiMoNb, were deposited on the surface of low-carbon steel. An in-depth investigation into the synergistic interplay of Mo and Nb on FeCoCrNi-based high entropy alloy coatings was conducted. The findings reveal that FeCoCrNiMo comprises an FCC stable solid solution, Mo3Co3C, and Ni3Mo3C. Conversely, FeCoCrNiMoNb exhibits a composition comprising an FCC stable solid solution phase, NbC, and (Mo, Nb)C. This is attributed to the robust interaction between Mo and Nb, wherein Mo infiltrates the NbC lattice, substituting for a portion of Nb atoms. Notably, the synergistic influence of Mo diminishes the formation energy of NbC, thereby lessening the energy barrier encountered during the nucleation of (Mo, Nb)C. Consequently, the incorporation of Mo facilitates the precipitation of Nb. The refined microstructure and solid solution strengthening effect of (Nb, Mo)C and NbC, coupled with their elevated Vickers hardness and hard elastic ratio, contribute significantly to the notable enhancement in surface hardness and wear resistance observed in the FeCoCrNiMoNb high entropy alloy coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.