Abstract

Niobium is the metal of choice for superconducting radio-frequency cavities for the future International Linear Collider. We present the results of atomic-scale characterization of the oxidation of niobium utilizing local-electrode atom-probe tomography employing picosecond laser pulsing. Laser pulsing is utilized to prevent a tip from fracturing as a buried niobium oxide/niobium interface is dissected on an atom-by-atom basis. The thickness of niobium oxide is about 15 nm, the root-mean-square chemical roughness is 0.4 nm, and the composition is close to Nb2O5, which is an insulator, with an interstitial oxygen concentration profile in Nb extending to a depth of 12 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.