Abstract

In relation to intrinsic gettering, the dependence of denuded zone width and thermally induced microdefect density on thermal conditions are investigated in a three-step annealing procedure consisting of high temperature annealing, low temperature, and dry O2 oxidation at 1000 °C. Additionally, depth profiles of interstitial oxygen concentrations are studied using thermal conversion. The obtained results show that at least an initial interstitial oxygen concentration above 8×1017 cm−3 is required to achieve efficient intrinsic gettering. The depth profile obtained after the third annealing is not the simple out-diffusion profile approximated by an error function, but one with a peak in the denuded zone. The dependence of depth profiles on a third annealing condition indicates that the formation of the peak in the depth profile can be ascribed to a reduction of interstitial oxygen resulting from precipitation in the bulk region. In order to explain the obtained profiles, we propose a simple diffusion model which takes into consideration the oxygen precipitation in the bulk region. By comparing the calculated profiles with the experimental ones, it is proved that this model can be used to estimate depth profiles under various annealing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.